Established in 1954, Regal Plastic Supply Company is considered one of the foremost pioneers in the plastic distribution industry. Throughout the years, the innovative “customer-oriented plan for success” thinking has become a credible trademark our customers rely on. Fortifying that philosophy, Regal introduced its Plastic Materials Reference Guide in 1984. As products and industries continue to evolve, so does this compilation of technical data. We view providing our customers with tools for effective planning and purchasing as important as meeting product “supply and demand”. You will find this guide an invaluable reference source for researching or finding the answer pertaining to your plastic application. The product information contained herein covers the most commonly used materials; it does not reflect our total capacity.

True customer service is a thought process not developed overnight. Our experience and stability in the industry gives Regal the opportunity to assist you in your plastics endeavors as you utilize staff who are accessible, knowledgeable and resourceful with regard to all inquiries.

We invite you to visit the Regal Plastic Supply Company location in your vicinity. All locations maintain generous inventories of plastic sheet, rod, tube, film, and numerous finished products.

Regal Plastic Supply Company thanks all of our customers for their patronage over the years. We will continue in our efforts to provide the best in JIT inventory and personal service. Plastic is in your future and Regal Plastic Supply Company is your best source.

Sincerely yours,

Regal Plastic Supply Company

National Association
Administrative Offices and Distribution Centers

CORPORATE OFFICE

N. KANSAS CITY, MO 64116
111 E. 10th Ave.
816-421-6290 800-627-2102 816-421-8206 FAX

DISTRIBUTION CENTERS

<table>
<thead>
<tr>
<th>Location</th>
<th>Address</th>
<th>Phone Numbers</th>
<th>Fax Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>N. KANSAS CITY, MO 64116</td>
<td>1500 Burlington</td>
<td>816-471-6390</td>
<td>816-221-5822</td>
</tr>
<tr>
<td></td>
<td>800-444-6390</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>816-221-5822 FAX</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WICHITA, KS 67214</td>
<td>329 North Indiana</td>
<td>316-263-1211</td>
<td>316-263-4641</td>
</tr>
<tr>
<td></td>
<td>800-444-1211</td>
<td></td>
<td>FAX</td>
</tr>
<tr>
<td></td>
<td>816-263-4641 FAX</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DES MOINES, IA 50325</td>
<td>8165 University Blvd.</td>
<td>515-223-8080</td>
<td>515-223-8062</td>
</tr>
<tr>
<td></td>
<td>800-867-8347</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>515-223-8062 FAX</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OKLAHOMA CITY, OK 73127</td>
<td>9342 West Reno</td>
<td>405-495-7755</td>
<td>405-787-3211</td>
</tr>
<tr>
<td></td>
<td>800-444-7755</td>
<td></td>
<td>FAX</td>
</tr>
<tr>
<td></td>
<td>405-787-3211 FAX</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WATERLOO, IA 50707</td>
<td>117 Industrial Dr.</td>
<td>319-232-8757</td>
<td>319-234-6509</td>
</tr>
<tr>
<td></td>
<td>800-373-8757</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>319-234-6509 FAX</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JOPLIN, MO 64801</td>
<td>601 East 9th</td>
<td>417-782-1420</td>
<td>417-782-8924</td>
</tr>
<tr>
<td></td>
<td>800-444-1420</td>
<td></td>
<td>FAX</td>
</tr>
<tr>
<td></td>
<td>417-782-8924 FAX</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPRINGFIELD, MO 65802</td>
<td>1956 East Phelps</td>
<td>417-831-3110</td>
<td>417-831-1386</td>
</tr>
<tr>
<td></td>
<td>800-444-3110</td>
<td></td>
<td>FAX</td>
</tr>
<tr>
<td></td>
<td>417-831-1386 FAX</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TULSA, OK 74145</td>
<td>11612 E. 58th St. South</td>
<td>918-249-0775</td>
<td>918-249-9708</td>
</tr>
<tr>
<td></td>
<td>800-444-2925</td>
<td></td>
<td>FAX</td>
</tr>
<tr>
<td></td>
<td>918-249-9708 FAX</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NASHVILLE, TN 37210</td>
<td>1055 Elm Hill Pike</td>
<td>615-242-4800</td>
<td>615-256-5600</td>
</tr>
<tr>
<td></td>
<td>888-615-6155</td>
<td></td>
<td>FAX</td>
</tr>
<tr>
<td></td>
<td>615-256-5600 FAX</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST. LOUIS, MO 63132</td>
<td>1456 Ashby Road</td>
<td>314-427-7722</td>
<td>314-427-7717</td>
</tr>
<tr>
<td></td>
<td>800-666-0084</td>
<td></td>
<td>FAX</td>
</tr>
<tr>
<td></td>
<td>314-427-7717 FAX</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OMAHA, NE 68108</td>
<td>2324 Vinton</td>
<td>402-344-4446</td>
<td>402-344-4451</td>
</tr>
<tr>
<td></td>
<td>800-333-4446</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>402-344-4451 FAX</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LA CROSSE, WI 54603</td>
<td>3160 Airport Road</td>
<td>608-784-2337</td>
<td>608-784-2336</td>
</tr>
<tr>
<td></td>
<td>608-784-2336 FAX</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Visit Regal Plastic Supply Company on the Worldwide Web:

www.regalplastic.com

REGAL GRAPHICS - FILM DIVISION

NORTH KANSAS CITY, MO 64116
111 E. 10th Avenue
816-842-1090 800-627-3425
816-421-0445

NASHVILLE, TN 37210
1055 Elm Hill Pike
615-242-8200
888-615-6155
FAX 615-256-5600

LA CROSSE, WI 54603
3160 Airport Road
608-784-2337
608-784-2336 FAX

SHERWOOD, OR 97140
13565 S.W.
Tualatin-Sherwood Rd. Building 200
503-625-2262
800-627-3425
503-625-4568 FAX
The Origins of Plastic Materials

Crude Oil

Naphtha

Aromatics

- Benzene
- Toluene
- Xylene
- Cumene
- Paraxylene

Olefins

- Ethylene
- Propylene
- Butadiene

Alkenes

- Crude Oil Naphtha

- Olefins

- Ethylene Oxide
- Plasticizer Alcohols

- Ethylene oxide derivatives
- Polypropylene
- Polyurethanes

- Plasticizers

- Resins
- Petrol

- Phenolic derivatives
- Acetone
- acrylics

- Adipic acid
- Nylon salt
- Nylon

- Pure terephthalic acid
- Polyester Film
INTRODUCTION

Preface

Introduction

PLASTIC-(per Webster)- “Any numerous organic, synthetic, or processed materials that are high molecular weight polymers.”

Polymers are a tribute to man’s creativity and inventiveness. They are truly man-made materials. Like any other material, they have their origins in nature, in such basic chemical elements as carbon, oxygen, hydrogen, nitrogen, chlorine, and sulfur. These elements in turn are extracted from the air, water, gas, oil, coal, or even plant life.

It was man’s inspiration to take these elements and combine them, via various chemical reactions, in an almost unending series of combinations, to produce the rich variety of materials we know today as plastics.

The possibilities of combining chemical elements to create plastics with different properties are almost endless. It is this diversity that has made plastics so applicable to such a broad range of end uses and products today.

In the Beginning

Given this kind of versatility and the role that plastics play in modern living, it’s surprising to realize that a little over a century ago there was no such thing as commercial plastic in the United States. During the 1850's and 60's, developmental work was going on with hard rubbers and cellulose materials, but the U.S. plastics industry officially dates its beginnings back to 1868, when a product called Celluloid was created as the first commercial plastic in the U.S. The development was in response to a competition sponsored by a manufacturer of billiard balls. It came about when a shortage developed in ivory from which the billiard balls were made, and the manufacturer sought another production method. Celluloid was one of the materials considered, and the U.S. plastics industry was born.

As has been typical of new plastic materials ever since, Celluloid quickly moved into other markets. The first photographic film used by Eastman was made of celluloid: producing the first motion picture film in 1882. The material is still in use today under its chemical name Cellulose nitrate, for making products like eyeglass frames.

Forty years were to pass before the plastics industry took its second major step forward. In 1909, Dr. Leo Hendrik Baekeland introduced Phenol formaldehyde plastics (or Phenolics as they are more popularly known), the first plastic to achieve world wide acceptance.

The third big thrust in plastics development took place in the 1920's with the introduction of Cellulose acetate, ureaformaldehyde, polyvinyl chloride, or Vinyl, and Nylon.

Evolution

In the World War II years of the 1940’s, the demand for plastics accelerated, as did research into new plastics that could aid in the defense effort.
By the start of the 1950’s plastics were on their way to being accepted by designers and engineers as basic materials, along with the more conventional ones.

Nylon, Teflon, Acetal, and Polycarbonate became the nucleus of a group in the plastics family known as the engineering thermoplastics. Their outstanding impact strength and thermal and dimensional stability enabled them to compete directly with metals. This group has grown since then to include a number of new plastics, as well as improved variations of older plastics that could similarly qualify for inclusion.

The Monomers & Polymers

Many plastics are derived from fractions of petroleum or gases that are recovered during the refining process. For example: ethylene monomer, one of the more important feedstocks, or starting materials for plastics, is derived in a gaseous form from petroleum refinery gas, liquefied petroleum gases, or liquid hydrocarbons. Although petroleum gas derivatives are not the only basic source used in making feedstocks for plastics, they are among the most popular and economical in use today. Coal is another excellent source in the manufacturing of feedstocks for plastics.

From these basic sources come the feedstocks we call monomers. The monomer is subjected to a chemical reaction known as polymerization; it causes the small molecules to link together into ever increasingly long molecules. Chemically, the polymerization reaction gas turns the monomer into a polymer, and thus a given type of plastic resin.

The Product as We See It

The polymer or plastic resin must next be prepared for use by the processor, who will turn it into a finished product. In some instances, it is possible to use the plastic resin as it comes out of the polymerization reaction. More often, however, it goes through other steps which turn it into a form that can be more easily handled by the processor and processing equipment. The more popular forms of resin for processing are pellet, granule, flake, and powder.

In the hands of the processor, these solids are generally subjected to heat and pressure. They are melted, forced into the desired shape (sheets, rods, and tubes) and then allowed to cure into a finished product. Resins are most readily available in their natural color, but by adding coloring agents, most any color can be achieved during the processing.

Plastics are a family of materials, not a single material. Each has its own distinct and special advantages.

Each day brings new plastic compounds, and new uses for the old compounds.
INTRODUCTION

Chronology of Plastic

<table>
<thead>
<tr>
<th>DATE</th>
<th>MATERIAL</th>
<th>ORIGINAL TYPICAL USE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1868</td>
<td>Cellulose Nitrate</td>
<td>Eye Glass Frames</td>
</tr>
<tr>
<td>1909</td>
<td>Phenol-Formaldehyde</td>
<td>Telephone Handsets</td>
</tr>
<tr>
<td>1926</td>
<td>Alkyd</td>
<td>Electrical Bases</td>
</tr>
<tr>
<td>1926</td>
<td>Analine-Formaldehyde</td>
<td>Terminal Boards</td>
</tr>
<tr>
<td>1927</td>
<td>Cellulose Acetate</td>
<td>Tooth Brushes, Packaging</td>
</tr>
<tr>
<td>1927</td>
<td>Polyvinyl Chloride</td>
<td>Raincoats</td>
</tr>
<tr>
<td>1929</td>
<td>Urea-Formaldehyde</td>
<td>Lighting Fixtures</td>
</tr>
<tr>
<td>1935</td>
<td>Ethyl Cellulose</td>
<td>Flashlight Cases</td>
</tr>
<tr>
<td>1936</td>
<td>Acrylic</td>
<td>Brush Backs, Displays</td>
</tr>
<tr>
<td>1936</td>
<td>Polyvinyl Acetate</td>
<td>Flash Bulb Lining</td>
</tr>
<tr>
<td>1938</td>
<td>Cellulose Acetate Butyrate</td>
<td>Irrigation Pipe</td>
</tr>
<tr>
<td>1938</td>
<td>Polystyrene or Styrene</td>
<td>Kitchen Housewares</td>
</tr>
<tr>
<td>1938</td>
<td>Nylon (Polyamide)</td>
<td>Gears</td>
</tr>
<tr>
<td>1938</td>
<td>Polyvinyl Acetal</td>
<td>Safety Glass Interlayer</td>
</tr>
<tr>
<td>1939</td>
<td>Polyvinylidene Chloride</td>
<td>Auto Seat Covers</td>
</tr>
<tr>
<td>1939</td>
<td>Melamine-Formaldehyde</td>
<td>Tableware</td>
</tr>
<tr>
<td>1942</td>
<td>Polyester</td>
<td>Boat Hulls</td>
</tr>
<tr>
<td>1942</td>
<td>Polyethylene</td>
<td>Squeezable Bottles</td>
</tr>
<tr>
<td>1943</td>
<td>Fluorocarbon</td>
<td>Industrial Gaskets</td>
</tr>
<tr>
<td>1943</td>
<td>Silicone</td>
<td>Motor Insulation</td>
</tr>
<tr>
<td>1945</td>
<td>Cellulose Propionate</td>
<td>Automatic Pens and Pencils</td>
</tr>
<tr>
<td>1947</td>
<td>Epoxy</td>
<td>Tools and Jigs</td>
</tr>
<tr>
<td>1948</td>
<td>Acrylonitrile-Butadiene-Styrene</td>
<td>Luggage</td>
</tr>
<tr>
<td>1949</td>
<td>Allylic</td>
<td>Electrical Connectors</td>
</tr>
<tr>
<td>1954</td>
<td>Polyurethane or Urethane</td>
<td>Foam Cushions</td>
</tr>
<tr>
<td>1956</td>
<td>Acetal</td>
<td>Automotive Parts</td>
</tr>
<tr>
<td>1957</td>
<td>Polypropylene</td>
<td>Safety Helmets</td>
</tr>
<tr>
<td>1957</td>
<td>Polycarbonate</td>
<td>Appliance Parts</td>
</tr>
<tr>
<td>1959</td>
<td>Chlorinated Polyether</td>
<td>Valves and Fittings</td>
</tr>
<tr>
<td>1962</td>
<td>Phenoxy</td>
<td>Bottles</td>
</tr>
<tr>
<td>1962</td>
<td>Polyalomer</td>
<td>Typewriter Cases</td>
</tr>
<tr>
<td>1964</td>
<td>Ionomer</td>
<td>Skin Packages</td>
</tr>
<tr>
<td>1964</td>
<td>Polyphenylene Oxide</td>
<td>Battery Cases</td>
</tr>
<tr>
<td>1964</td>
<td>Polyamide</td>
<td>Bearings</td>
</tr>
<tr>
<td>1964</td>
<td>Ethylene-Vinyl Acetate</td>
<td>Heavy Gauge Flexible Sheeting</td>
</tr>
<tr>
<td>1965</td>
<td>Paraffine</td>
<td>Insulating Coatings</td>
</tr>
<tr>
<td>1965</td>
<td>Polysulfone</td>
<td>Electrical/Electronic Parts</td>
</tr>
<tr>
<td>1970</td>
<td>Thermoplastic Polyester</td>
<td>Electrical/Electronic Parts</td>
</tr>
<tr>
<td>1973</td>
<td>Polybutylene</td>
<td>Piping</td>
</tr>
<tr>
<td>1975</td>
<td>Nitrile Barrier Resins</td>
<td>Containers</td>
</tr>
</tbody>
</table>
The information contained herein provides product data, suggestions, and guidelines we believe to be reliable. They are offered in good faith but without any guarantee, as conditions, type of product, and methods of product use are beyond our control.

Regal Plastic Supply Company makes no warranties either expressed or implied and expressly disclaims any implied warranty of fitness for a particular purpose or procedure.

Sufficient verification and testing to determine the suitability for their own particular purpose of any information or products referred to herein, is strongly recommended.
Plastic tubing is available to meet almost any application requirement. With varying formulations manufactured out of PVC, polyethylene (PE), polypropylene (PP), polyurethane (PUR), and polyvinylidene fluoride (PVDF), and Teflon® FEP and PFA, tubing is widely used in industry:

- Food and Beverage
- Chemical Processing
- Environmental
- Industrial
- Laboratory
- Medical
- Peristaltic Pump
- Pharmaceutical / Biotech
- Semiconductor Processing

PVC tubing exhibits excellent elongation and drape. It is typically used for lower pressure applications and for OEM designs with complex tubing pathways. Several grades are available for vacuum, fuel and high pressure applications.

PE tubing has chemical resistance, is semi-rigid, translucent and low in extractables.

PP tubing exhibits corrosion resistance to many acids and alkalies, is semi-rigid, offers higher operating temperatures and working pressures than PVC, PE, or PUR and is unaffected by most solvents at ambient temperature.

PUR tubing is resistant to abrasion, flex fatigue, aliphatic hydrocarbons, petroleum products, weak acids, and alkalies. It remains transparent and flexible at low temperatures. Pure polyurethane tubing contains no plasticizers and low levels of extractables which make it ideal for high-purity applications.

PVDF tubing is semi-rigid exhibiting corrosive, UV light, weathering, fungi, and abrasion resistance. Non-toxic, this tubing has a low level of extractables.

Teflon® FEP tubing is semi-rigid with low extractables and excellent for all concentrations of acids, aliphatic alcohols, aldehydes, bases, esters, hydrocarbons (aliphatic, aromatic and halogenated), ketones, and strong oxidizing agents.

Teflon® PFA tubing is semi-rigid with a very low water absorption and high chemical and corrosion resistance.

Tubing is available in braid-reinforced grades for increased pressure resistance and in black color for resistance to the ozone, UV light and weathering. Platinum-cured silicone tubing is produced without peroxide or plasticizers.

Working temperature range varies from a low of −400°F (-240°C) to as high as 500°F (287°C) with continuous use temperature as high as 400°F (204°C).

Vacuum tubing typically withstands up to 30° Hg at ambient temperature and 27° Hg at 140°F (60°C).

PRODUCT COMPLIANCE CODES
Standards found within the tubing industry include:
- FDA
- NSF
- USDA
- U.S.P. Class IV and 3A
- U.S.P. Class VI

PRODUCT AVAILABILITIES
Tubing comes in a wide range of inside diameters, outside diameters, and wall thicknesses. It is virtually impossible to list all the availabilities in one chart. Listed below are standard gauges available. Please consult with your nearest Regal Plastic Supply Distributor on current specific product availabilities and for customized formulations.

Inside Diameters:	1/32” to 4”
Outside Diameters:	3/32” to 5”
Wall Thicknesses:	1/32” to 1/2”

STERILIZATION GUIDELINES
Testing of product using the specific conditions of the application prior to specifying a particular tubing formulation is highly recommended.

- Autoclaving (250°F / 121°C, 15 psig for 20 - 30 minutes) - clean and rinse item with distilled water before autoclaving. Certain chemicals which have no appreciable effect on resins at room temperature may cause deterioration at autoclaving temperatures unless removed with distilled water beforehand.
- Gas - ethylene oxide formaldehyde
- Disinfectants - benzalkonium chloride, formalin, ethanol, etc.
- Dry Heat - 170°C (338°F)
- Radiation - gamma irradiation at 2.5 Mrad with unstabilized plastic.

Contact your nearest Regal Plastic Supply Representative for specific tubing properties and additional information.
Acetron is a registered trademark of DSM Engineering Plastic Products.

Acrylite is a registered trademark of CYRO Industries.

Alucobond is a registered trademark of Swiss Aluminum Ltd.

atoglas is a trademark of Elf Atochem, S.A.

Biefang is a registered trademark of Hunt Corporation.

Celazole is a registered trademark of Hoechst Celanese Corporation.

Celcon is a registered trademark of Celanese Corporation.

CleanStat is a registered trademark of Poly Hi Solidur, Inc.

ChampLine is a trademark of Poly Hi Solidur, Inc.

Clorox is a registered trademark of the Clorox Company.

ColorQuik is a trademark of Minnesota Mining and Manufacturing Company.

Coroplast is a registered trademark of the Coroplast Division of Great Pacific Enterprises, Inc.

Corzan is a registered trademark of The B. F. Goodrich Company.

Delrin is a registered trademark of E. I. du Pont de Nemours and Company.

Downy is a registered trademark of Proctor & Gamble.

Dripgard is a trademark of General Electric Company.

Duratron is a registered trademark of DSM Engineering Plastic Products.

Eastar is a registered trademark of Eastman Chemical.

Ensicar is a registered trademark of Ensinger Industries, Inc.

Ensifone is a registered trademark of Ensinger Industries, Inc.

Eniskem is a registered trademark of Ensinger Industries, Inc.

Ensilon is a registered trademark of Ensinger Industries, Inc.

Ensiro is a registered trademark of Ensinger Industries, Inc.

Ensital is a registered trademark of Ensinger Industries, Inc.

Ensitep is a registered trademark of Ensinger Industries, Inc.

Ensilute is a registered trademark of DSM Engineering Plastic Products.

Fantastik is a registered trademark of Dowbrands, Inc.

Floor Guard is a registered trademark of Hunt Corporation.

Floor Grip is a trademark of Hunt Corporation.

Fluorosint is a registered trademark of DSM Engineering Plastic Products.

Fome-Cor is a registered trademark of International Paper Company.

Formula 409 is a registered trademark of the Clorox Company.

Gatorblanks is a registered trademark of International Paper Company.

Gatordex is a registered trademark of International Paper Company.

Gatorfoam is a registered trademark of International Paper Company.

Gatorplast is a registered trademark of International Paper Company.

HYLAR 5000 is a registered trademark of Ausmonit USA, Inc.

Hyzod is a registered trademark of Sheffield Plastics, Inc.

Hydcor is a trademark of A. L. Hyde Company.

Hytrex is a registered trademark of E. I. du Pont de Nemours and Company.

Hydex is a registered trademark of A. L. Hyde Company.

Hydel is a registered trademark of A. L. Hyde Company.

Implex is a registered trademark and is a trademark of Elf Atochem, S.A.

Jet Guard is a registered trademark of Hunt Corporation.

JetMount is a registered trademark of International Paper Company.

Joy is a registered trademark of Proctor & Gamble.

Ketron is a registered trademark of DSM Engineering Plastic Products.

Kevlar is a registered trademark of E. I. du Pont de Nemours and Company.

Komacel is a registered trademark of Kömmerling.

Komatex is a registered trademark of Kömmerling.

Kydex is a registered trademark of the Kleerdex Company.

Kynar is a registered trademark of Elf Atochem, S.A.

Kynar 500 is a registered trademark of Pennwalt Corporation.

Lexan is a registered trademark of General Electric Company.

Lexgard is a registered trademark of General Electric Company.

Lucite is a registered trademark of Ineos Acrylics.

MC is a registered trademark of DSM Engineering Plastic Products.

Megular is a registered trademark of Megular’s, Inc.

MightyCore is a registered trademark of Hunt Corporation.

Mr. Clean is a registered trademark of Proctor & Gamble.

NORRENE is a registered trademark of Norton.

Noryl is a registered trademark of General Electric Company.

Nylatron is a registered trademark of DSM Engineering Plastic Products.

Nylawear is a registered trademark of A. L. Hyde Company.

ORACAL is a registered trademark of LIG International, Inc.

OptiMount is a registered trademark of Hunt Corporation.

Palmolive Liquid is a registered trademark of Colgate Palmolive.

PEEK is a trademark of Victrex PLC.

Pillocore is a registered trademark of Hunt Corporation.

Plexiglas is a registered trademark of Elf Atochem, S.A.

Polypropylene is a registered trademark of DSM Engineering Plastic Products.

Print Guard is a registered trademark of Hunt Corporation.

Print Shield is a registered trademark of Hunt Corporation.

ProSeal is a trademark of Hunt Corporation.

Proteus is a registered trademark of Poly Hi Solidur, Inc.

Quick Stik is a registered trademark of Hunt Corporation.

Radel is a registered trademark of BP Amoco.

Ryton is a registered trademark of Phillips Petroleum Company.

Sanalite is a registered trademark of Poly Hi Solidur, Inc.

Scotchcal is a trademark of Minnesota Mining and Manufacturing Company.

Seal is a registered trademark of Hunt Corporation.

Semidepose is a registered trademark of DSM Engineering Plastic Products.

SiIGlaze is a registered trademark of General Electric Company.

SiIIPru is a registered trademark of General Electric Company.

Single Step is a registered trademark of Hunt Corporation.

Sintra is a registered trademark of Alusuisse Composites, Inc.

Solvay is a registered trademark of Solvay.

Spar-Cal is a registered trademark of Spartan International, Inc.

Spectra is a trademark of Eastman Chemical.

Spray ‘N Wash is a registered trademark of Proctor & Gamble.

Tinplate is a trademark of Hunt Corporation.

Techtron is a registered trademark of DSM Engineering Plastic Products.

Teflon is a registered trademark of E. I. du Pont de Nemours and Company.

Tend is a registered trademark of Regal Plastic Supply Company.

Tivar is a registered trademark of Poly Hi Solidur, Inc.

ThermaShield is a trademark of Hunt Corporation.

Thermoclear is a registered trademark of General Electric Company.

3M is a registered trademark of Minnesota Mining and Manufacturing Company.

Top Job is a registered trademark of Proctor & Gamble.

Torlon is a registered trademark of BP Amoco.

Tremco is a registered trademark of Tremco, Inc.

Ultex is a registered trademark of General Electric Company.

Ultraform is a registered trademark of BASF.

UltraGlaze is a registered trademark of General Electric Company.

UltraPruf is a registered trademark of General Electric Company.

Valox is a registered trademark of General Electric Company.

Vekton is a registered trademark of Chemiplast, Inc.

Vulkem is a registered trademark of MAMECO International, Inc.

Windex with Ammonia D is a registered trademark of the Drackett Products Company.

Wisk is a registered trademark of the Drackett Products Company.

Zytel is a registered trademark of E. I. du Pont de Nemours and Company.
The following companies have assisted in the development of this plastics reference guide by providing product specific and general technical information.

A. L. Hyde Company
Alusuisse Composites, Inc.
Coroplast Division, Great Pacific Enterprises
Cyberbond L.L.C.
CYRO Industries
DSM Engineering Plastic Products
Sheffield Plastics, Inc.
Elf Atochem North America, Inc., atoglas™ division
Ensinger Engineering Products
General Electric Company
GE Structured Products
GE Silicones
Hunt Corporation
I.A.P.D. (International Association of Plastic Distributors)
Ineos Acrylics
International Paper Company
Kleerdex Company
Kömmerling USA, Inc.
ORACAL®
Polycast High Performance Plastics, Inc.
Poly Hi Solidur, Inc.
R Tape Corporation
Seeyle, Inc.
Shin-Etsu Silicones of America, Inc.
SPAR-CAL®
Thermoplastic Processes, Inc.
Tremco®, Inc.
W. F. Lake Corporation
Wegner North America, Inc.
Zeus Industrial Products
CUSTOMER SERVICE AND PRODUCT
ALL UNDER ONE ROOF.